
4692 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 71, NO. 5, MAY 2022

Practical Privacy-Preserving Federated Learning
in Vehicular Fog Computing

Yiran Li , Graduate Student Member, IEEE, Hongwei Li , Senior Member, IEEE, Guowen Xu , Member, IEEE,
Tao Xiang , Member, IEEE, and Rongxing Lu , Fellow, IEEE

Abstract—Benefitting from the outstanding capabilities of in-
telligent controlling and prediction, federated learning (FL) has
been widely applied in Internet of Vehicle (IoV). However, applying
FL into fog-computing-based IoV still suffers from two crucial
problems: (i) how to achieve the privacy-preserving FL under the
flexible architecture of fog computing with no assistance of cloud
server, and (ii) how to guarantee the privacy-preserving FL to
perform with high efficiency and low overhead in fog-computing
settings. For addressing the above issues, we propose a practical
framework, named GALAXY, the first of its kind in the regime of
privacy-preserving FL under the setting of non-cloud-assisted fog
computing. Based on the secure multi-party computation (MPC)
technology, our framework satisfies the (T,N)-threshold prop-
erty, permitting N (a scalable number) fog nodes to cooperate
with multiple users for implementing privacy-preserving FL, while
resisting the collusion up to T − 1 fog nodes, and being robust to
at most N − T fog nodes simultaneously dropping out. Besides,
considering the practical scenario that low-quality data may neg-
atively impair the FL model convergence, our scheme can handle
users’ low-quality data while protecting all user-related informa-
tion under our secure framework. Based on the above superior
properties, our scheme can perform with high scalability, high
processing efficiency, and low resource overhead, being practical
for fog-computing-based IoV. Extensive experiment results demon-
strate our scheme with high-level performance.

Index Terms—Fog computing, IoV, privacy-preserving federa-
ted learning, secure multi-party computation.

I. INTRODUCTION

F EDERATED learning (FL) has attracted a wide attention
in both academic and industry fields due to its superiorities
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in scalability and security. Meanwhile, enormous FL-based ap-
plications have been proposed in fog-based internet of vehicles
(IoV), since both fog computing and FL are implemented under
a similar distributed architecture. For example, applying FL for
establishing the automatic-driving platform has been demon-
strated high accuracy and efficiency for auto-pilot and real-time
driving control. In the malfunction detection domain, FL-based
framework, being exploited to detect faults of automobiles,
performs with far more precision and lower detection error
rate than non-intelligent detection approaches. Undoubtedly,
federated learning integrated with fog computing has brought
IoV with full of vitality.

Nevertheless, some hard stumbling blocks are still hindering
the proliferation of FL in fog-computing-based IoV. One of the
most important issues is to protect users’ privacy during the
FL training process. Since users’ raw data is not required to be
shared to the service center during the training process, FL can
protect users’ private information to a certain degree. However,
users’ private information can still be inferred from the gradients
shared by users [1]–[3]. For addressing this issue, many state-of-
the-art works have been proposed in various dimensions, which
are mainly derived from three technologies: differential privacy
(DP), homomorphic encryption (HE), and secure multi-party
computation (MPC). For privacy protection, DP technology
can perform quite efficiently, since its main idea is to mask
related information with noise (such as Laplace noise, Gaussian
noise, etc.), requiring only a little additional overhead. However,
applying DP to achieve private federated learning is required to
balance accuracy and privacy, which means that the higher model
accuracy is obtained, the more privacy will be lost. Meanwhile,
recent research result [4] demonstrates that current DP-based FL
can rarely offer satisfied accuracy while guaranteeing acceptable
privacy. Homomorphic encryption, e.g., linear homomorphic
encryption (LHE), enables computations on encrypted data,
without loss of data utility. However, the privacy of such method
depends on enormous modular exponential operations in ci-
phertext domain, which is computationally intensive. When it
is utilized for protecting FL, the large size of ciphertext will
become an insurmountable burden for computing participants.

In contrast to DP and HE technologies, MPC allows multiple
parties to securely calculate an agreed function. Benefitting
from the higher scalability, MPC-based methods seem more
powerful for establishing privacy-preserving FL in vehicular fog
computing. Currently, several state-of-the-art researches have
constructed their frameworks on two [5]–[7], three [8]–[10],
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or four [11], [12] servers. Such methods, nevertheless, limit
the number of computing servers in fixed 2, 3, and 4. As we
know, fog computing has flexible architectures in IoV, which
means that both the participating fog nodes and the number
of participating fog nodes are changeable. Obviously, current
MPC-based methods, taking fixed number of computing entities,
are not suitable for fog computing because of the limited scala-
bility. Besides, almost their schemes require an honest majority
among the computing servers, and the collusion between any
two servers will thoroughly destroy their secure framework. This
might not meet the demands of privacy and confidentiality, let
alone more strict protection regulations. Furthermore, due to
the instability of equipment or environment, servers may be out
of work sometimes. However, in their schemes, once any one
of the servers drops out, the whole process will be broken off
immediately.

Additionally, current researches [13], [14] have demonstrated
that quality-discrepancy actually exists among different data
suppliers in practical FL training process. Indeed, utilizing
low-quality data for training FL model may decrease model
accuracy, and even cause the model divergence. Hence, for
enhancing the practicality of FL in fog-computing-based IoV,
it is essential to handle these low-quality data shared by users.
As far as we know, two recent methods of privacy-preserving
FL [15], [16] have considered this issue. Zhao et al. [15] pro-
posed the first scheme, named SecProbe, where they construct
their secure framework based on the technology of differential
privacy (DP) in a single-cloud setting. However, their scheme
still suffers from the limited utility of DP, which is mentioned
above. Following Zhao et al.’s work, Xu et al. [16] proposed
PPFDL, exploiting MPC to construct their secure framework
in a two-server setting. Nevertheless, similar to above two-
server MPC-based methods [5]–[7], their scheme is not suit-
able for fog-computing due to the limitations of scalability
and security.

Beyond of the above-mentioned limitations, none of these
existing efforts have considered a significant issue, that is, how
to satisfy the low latency and low resource overhead in practi-
cal fog-computing-based IoV. Implementing cloud-assisted fog
computing usually requires multiple interactions between the
cloud service center and fog nodes, thus causing much more
time delay and resource overhead [17]. Therefore, it is crucial to
establish a none-cloud-assisted framework for supplying higher
timeliness and freeing participants from the trouble of resources.
For addressing the above issues, in this paper, we propose
GALAXY, a practical privacy-preserving federated learning in
vehicular fog computing. We summarize our contributions as
follows:
� A novel framework is proposed to implement privacy-

preserving FL in the none-cloud-assisted vehicular fog
computing. Through the masterly utilizations of Shamirs
secret sharing and Lagrange interpretation, our scheme can
guarantee the information-theoretic privacy for all users,
while satisfying the (T,N)-threshold property.

� Our GALAXY advances current MPC-based methods for
privacy-preserving machine learning, in terms of scalabil-
ity, security, and robustness.

Scalability. GALAXY splits the computation among mul-
tiple computing nodes, extended to unbounded N , while
current MPC-based methods are limited in 2, 3, or 4. There-
fore, our GALAXY can perform with more scalability in
the flexible fog computing.
Security. GALAXY resists the collusion among up to T − 1
computing nodes, while users’ private information can still
be protected under a semi-honest adversarial model. This is
contrast to MPC-based methods, which allows no collusion
between servers.
Robustness. GALAXY supports at most N − T fog nodes
simultaneously being off-line, and the remaining fog nodes
can still guarantee the training process being executed
smoothly, whereas MPC-based methods permit no com-
puting server to drop out.

� Different from DP-based approaches, our GALAXY will not
decrease the usability of users’ data, performing with a
slight impact on the model accuracy.

� Unlike HE-based schemes computing under large-scale
ciphertext modes, our GALAXY is executed in a small finite
field with the same scale as plaintext, which benefits our
scheme with more advantages in resource overhead.

� Our scheme can alleviate the negative impact of low-
quality data, while protecting all user-related information
under our secure framework, including gradients and ag-
gregation weights.

� We rigorously prove the security of our GALAXY through
UC model, and conduct extensive experiments to demon-
strate the high-level performance in terms of accuracy,
efficiency, and resource overhead.

The remaining parts of this paper are organized as follows. We
state the problem and review some primitives in Section II. We
introduce our scheme and give a rigorous proof, respectively in
Sections III and IV. Then we present a comprehensive analysis of
performance in Section V. Next, we discuss some related works
in Section VI. Finally, we conclude our work in Section VII.

II. PROBLEM STATEMENT AND PRIMITIVES

A. System Overview

As shown in Fig. 1, we consider that N fog nodes cooperate
with M users to achieve the FL training process. To be specific,
all the participants hold the same deep neural network (DNN)
initialized with the global weightω. Each usersmfirst calculates
its local gradient gm, throgh training on its own local data. Then
gm, as a secret, will be split to N Shamir’s shares, and each
n-labeled share will be sent to each fog nodePn. Nextly, through
our MPC-based framework, N nodes cooperate to calculate
the newest global weight ω for updating the DNN model. For
achieving the training task, nodes and users iteratively execute
above processes until the convergence condition is satisfied.
Note that, during the training process, users just upload shares
of gradients, which contain no useful information of the gra-
dients. Additionally, after receiving the shares, all nodes will
execute our MPC-based protocol to obtain shares of the global
weight. Whenever it is required, any T out of N fog nodes can
reconstruct the global weight.
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Fig. 1. System overview.

Remark: In this paper, we consider a practical fog-computing
scenario for FL, where no cloud server is supposed to provide
any assistance. Unlike cloud-assisted methods [18], [19], no
interaction between fog nodes and the cloud server is required in
our scheme, thus shortening the processing delay and lowering
the resource overhead. Since users are just required to upload
some shares, while other computations are outsourced to fog
nodes, it is very friendly to edge users with limited resources.
Additionally, we consider a practical scenario that some users
may achieve the local training based on low-quality data. There-
fore, their uploaded gradients may deviate from the convergence
trend, specifically, some components of these gradient vectors
may emerge with inverse signs or biased values. As a result,
these gradients may slow down the convergence of the DNN
model, and even ease the model divergence. For addressing this
issue, we utilize the methods of removing contradictory compo-
nents and weighted aggregation to alleviate the negative impact
caused by low-quality data. Meanwhile, all user-related private
information will be protected under our secure framework. More
details are presented in Section III.

B. Threat Model and Goals

In our GALAXY, the main security threats come from the fog
nodes, since users will upload the shares of private information
to these nodes. In this paper, we consider a passive adversary
mode, where fog nodes are semi-honest, which means that each
node will strictly execute the pre-designed protocol, being not
allowed to change the input shares by themselves. Nevertheless,
some of these nodes may try to infer users’ data privacy through
exploiting mastered prior information (such as the number
of participants, the labels of participants, etc). Besides, our
GALAXY permits any less than T fog nodes to collude with each
other, while no useful information of users can be disclosed to
the colluded group.

Under the above threat model, we formulate the privacy
requirements as follows.

� Confidentiality of users’ gradients: An adversary may
compromise fog nodes for inferring the gradients of users,
thus disclosing users’ private information (e.g., name, ad-
dress, etc) based on these leaked gradients. Therefore, it is
essential to protect users’ gradient information from being
leaked to fog nodes during the training process.

� Protection of users’ aggregation weights: For guarantee-
ing the training to be fair and non-discriminative to all
of the users, the information of the aggregation weights,
representing “quality of data,” should also be guaranteed
private against fog nodes.

C. Secret Sharing

In this paper, we utilize the classical Shamir’s T -out-of-N
secret sharing [20] to establish our MPC-based protocol, which
can benefit our framework with abundant functionality, scala-
bility, security, and efficiency.

The main idea of this scheme is derived from how to
solve a polynomial. Considering a polynomial of degree at
most T−1: fs(x) = s+ a1x+ · · ·+ atx

t + · · ·+ aT−1x
T−1,

where s ∈ F is the secret, such that fs(0) = s, and coefficients
of a1, . . ., at, . . ., aT−1 are randomly selected from F, where
F = Zp is a finite field, and p is a prime with the restriction
condition of p > N . Then the secret s will be split into N parts,
and any T parts of them can reconstruct the secret s, but any
T−1 parts can not recover the secret (no useful information of
the secret s can be inferred). Note that, all the operations will
be over the finite field Zp. The specific implementation of this
secret sharing protocol is introduced as below.

1) S.share Based on the polynomial fs(x), the secret s can be
divided into N parts, and the n-th part Pn will privately
hold the secret share sn = f(n), then the whole set of
secret shares can be formally denoted as [s; fs(n)]T =
(fs(1), . . ., fs(n), . . ., fs(N)). For simplicity, we denote
it as [s]T , and each Pn holds [s]nT = fs(n).

2) S.recon Randomly selecting T shares, e.g., [s, fs(1)];
[s, fs(2)]; · · · ; [s, fs(T )], from the set of [s]T . Then
the secret s = fs(0) can be obtained through Lagrange
interpolation, which will be introduced as follows.

D. Lagrange Interpolation

Lagrange interpolation presents another form of polynomi-
als, which can be utilized for reconstructing the secret s with
higher efficiency. Still considering a polynomial f(x) over Zp

of degree at most T − 1, and C is subset of Zp with |C| = T ,
the polynomial can be defined as

f(x) =
∑

i∈C
f(i)λi(x) (1)

where λi(x) is a polynomial degree at T − 1, and for i, j ∈ C,
if i �= j, λi(j) = 0, else if i = j, λi(j) = 1, in other words,

λi(x) =
∏

j∈C,j �=i

x− j

i− j
(2)

Based on (2), it can be observed that there exists an easily com-
putable set of values r = {ri|i ∈ C}, where ri = λi(0), such
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Fig. 2. Arithmetic circuit.

that s = f(0) =
∑

i∈C rif(i). The r can be considered as the
recombination vector, which is a public information computed
and held by all players. Note that λi(x) does not depend on f(x),
so neither does λi(0). Hence, the same recombination vector r
works for all f(x).

E. Arithmetic Circuit

In this paper, we utilize the arithmetic circuit (AC) for se-
curely evaluating the function F , whose operations are all
over a finite field Zp. For the convenience of explanation, we
consider a simple function F (s1, s2, s3) = (s1 + s2) ∗ (as2) +
(s2 ∗ s3) + (as2) = y, taking s1, s2, s3 as input and y as output.
According to this function, we construct a simple circuit de-
scribed by an acyclic directed graph, as shown in Fig. 2, where
nodes are denoted as gates, connected by wires. Indeed, our AC
supports three types of internal operation gates, i.e., addition,
multiplication, and multiply-by-constant (×a ∈ Zp) gates, all
of which are presented in the example circuit in Fig. 2. Note that
addition and multiplication gates have 2 input wires, while the
multiply-by-constant gate has just 1 input wire, and all of these
gates have more than 1 output wires. Additionally, one output
gate (1 input wire and no output wire) is implemented for each
Pn.

For securely executing the AC protocol, each input secret si
will be divided intoN secret shares as [si]1T ; . . .; [si]

n
T ; . . .; [si]

N
T

based on Shamir’s sharing, being respectively taken as the input
sharing for each Pn. Then each Pn, holding the unified AC,
calculates over these shares based on the internal operation gates.
For guaranteeing the correctness of the AC, all the gates in the
AC should be processed. After this, eachPn will obtain an output
[y]nT , which is a secret share of y atT -threshold Shamir’s sharing.

F. Federated Learning

For clarifying the main idea of deep neural networks (DNNs),
we present a fully-connected neural network [21] shown in
Fig. 3, which consists of 3 layers, i.e., input layer, hidden
layer, and output layer. As depicted in Fig. 3, training a neural
network can be divided into two phases, i.e., feed-forward and
back-propagation, where the first one aims to obtain an output ȳ
through a series of operations on the labeled input (x|y), while

Fig. 3. Neural network.

the second one is for updating the weightω of the neural network
by the algorithm of stochastic gradient descent (SGD) [22].
Specifically, given the input vector x = {x1, x2, x3} labeled
by y, the feed-forward process can be described as a function
ϕ(x,ω) = ȳ, takingx as input and ȳ as output, whereω denotes
the parameter of weight connecting nodes between adjacent
layers. Then given the output ȳ and label y, the loss function
can be obtained as a 2 norm of a vector:Lϕ((x,y),ω) = ||y −
ȳ||2 = ||y − ϕ(x,ω)||2. During the back-propagation process,
we can minimize the loss function to adjust the weight, based on
the algorithm of stochastic gradient descent (SGD) [23]–[25].
Specifically, the weight updating process can be described as
follows,

ωj+1 ← ωj − α∇Lϕ((x,y),ωj) (3)

where α denotes the learning rate. Through iteratively executing
feed-forward and back-propagation until an approximate mini-
mum is obtained, we can obtain the optimal parameter of weight
for the DNNs.

Now we review federated learning as follows. ConsideringM
participating users, each user m ∈ [1,M ] holds a local data set
Dm, e.g., Dm = {(xk,yk); k = 1, 2. . .,K}, so the total data
set D can be defined as D = ∪m∈[1,M ]D

m. In j-th iteration,
a mini-batch Dm

j will be randomly chosen by user m, and the
total data set is denoted as Dj = ∪m∈[1,M ]D

m
j . Then each user

m locally computes gmj =
∑

(xk,yk)∈Dm
j
∇Lϕ((xk,yk),ωj),

and uploads the gmj to the service center. After this, the weight
is updated as

ωj+1 ← ωj − α ·
∑

m∈[1,M ] g
m
j∑

m∈[1,M ] |Dm
j |

(4)

Finally, ωj+1 will be broadcasted to each user for updating
their local neural network. The above process will be iteratively
executed until satisfying the predefined convergence condition.

III. OUR SCHEME

In this section, we will introduce the details of our GALAXY,
which enables fog nodes and users cooperatively achieve the
privacy-preserving FL. We first introduce our secure circuit eval-
uation protocol (SCEP), the footstone of our secure framework.
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Fig. 4. SCEP: Secure circuit evaluation protocol.

Then we present a method to handle low-quality data. Finally,
we introduce how to implement our GALAXY.

A. Secure Circuit Evaluation Protocol

Overall, our secure circuit evaluation protocol (SCEP) is de-
rived from Shamir’s secret sharing, Lagrange interpolation, and
arithmetic circuit, being executed over the finite field Zp. In our
framework, a function F , operated over Zp, can be described as
an arithmetic circuit (AC). For securely calculating the function
F , users’ private data will be divided into N labelled Shamir’s
secret shares and respectively sent to N labelled fog nodes,
while each fog node Pn, holding the unified AC, will calculate
a final share of the output of F based on the unified AC and
the input shares. Finally, an assigned fog node Pi (i ∈ [1, N ])
utilizes Lagrange interpolation to reconstruct the output of F .
The details are presented in Fig. 4.

Proposition 1: Considering a corrupted (semi-honest) node
group A⊂ {P1, . . .PN}, where |A| < T < N/2. After execut-
ing our SCEP , each user’s gm ∈ GM = (g1, . . ., gm, . . ., gM )

will be protected against all nodes in A in an information-
theoretic sense.

Proof: As shown in Fig. 4, considering two input vectors
GM=(g1, . . ., gm, . . ., gM ) and G′M=(g′1, . . ., g

′
m, . . ., g′M ), we

prove the security for each part of the protocol.
Sharing:Each Pn ∈ A just holds shares of GM . If we replace

GM with G′M , based on Shamir’s secret sharing, the views of
Pn ∈ A will have the same distribution for both GM and G′M ,
so that no useful information of each gm will be leaked.

Addition and Multiply-by-constant: Here no participant sends
or receives anything, so that the privacy will still be guaranteed.

Multiplication:Before the current multiplication, we can con-
sider that all values held by Pn ∈ A have the same distribution
for GM and substitution G′M . After the local multiplication by
eachPn ∈ A, these values will be supposed to still have the same
distribution. Thereby, the generated values by each Pn ∈ A still
have the same distribution, while the honest nodes just send the
shares seeming random to each Pn ∈ A. Additionally, A can
only see T−1 shares, so the final values held by A have the
same distribution for both GM and G′M .

Output Reconstruction: Here all shares of [y; fy]T are held
by Pi. If Pi is honest, nothing will be leaked to nodes in A. If
Pi ∈ A is corrupted, then nodes in A see all shares in [y; fy]T .
However, all these shares just can reconstruct the final output of
y, while no useful information of GM will be leaked. �

B. Scheme for Handling Low-Quality Data

As mentioned in Section II-F, for achieving the FL training,
it is required to average the gradients uploaded from users.
However, in real-world training process, users may upload some
low-quality gradients due to unstable equipment or irregular
operations. Recent research results [26], [27] have shown that
the low-quality gradients may differ far from the collaboratively
generated gradient which determines the convergence trend. As
a result, the components of these gradient vectors may perform
with opposite signs or biased values, thus negatively impacting
the model convergence, decreasing the convergence rate, and
even causing divergence. Therefore, it is essential to handle these
low-quality-data users. To do so, our first intuition is to remove
these components of inverse signs (named as contradictory
components) and find an optimal aggregation mechanism (not
just averaging) for the remaining components. Therefore, we
propose a novel method combining “Removing Contradictory
Components (RCC)” and “Weighted Aggregation (WA),” intro-
duced below.

1) Removing Contradictory Components: In our settings,
we consider that M users participate in the FL training.
Through pre-training the DNN model, the weight of the model
is initialized as ω(0)=(ω1

(0), . . ., ω
l
(0), . . ., ω

L
(0)) with L dimen-

sions, accordingly, the initial global gradient is obtained as
g(0)=(g1

(0), . . ., g
l
(0), . . ., g

L
(0)). In each j-th iteration, each user

m trains their local model to obtain the local gradient gm,(j) =

(g1
m,(j), . . ., g

l
m,(j), . . ., g

L
m,(j)), which will be shared for calcu-

lating current global gradient g(j)=(g1
(j), . . ., g

l
(j), . . ., g

L
(j)) to

further update the model. Besides, we consider that only a small
part of users may upload low-quality gradients.
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Algorithm 1: Removing Contradictory Components.

Input: User m’s gradient gm=(g1
m, . . ., glm, . . ., gLm),

Global gradient g=(g1, . . ., gl, . . ., gL).
1: Initialize global gradient

g(0) = (g1
(0), . . ., g

l
(0), . . ., g

L
(0));

2: In j-th iteration, given previous global gradient g(j−1),
a initialized counter Cm,(j) = 0, each user m does
below;

3: for each glm,(j) ∈ gm,(j) do

4: if Sign(glm,(j)) �= Sign(gl(j−1)) then

5: glm,(j) ← null; � Remove contradictory
components

6: Cm,(j) = Cm,(j) + 1;
7: end if
8: end for
9: if Cm,(j)

L > v(j) then
10: gm,(j) ← null; � Remove the whole gradient
11: end if

As discussed above, the gradient is a vector in nature, whose
direction is jointly determined by the two factors of sign and
value of the components constituting the gradient. In one di-
mension of the gradient, the sign of the component determines
the direction (increase or decrease) which the model should be
improved along. Indeed, in each j-th iteration, through compar-
ing local gradient gm,(j) with current global gradient g(j), each
user can identify the components which have the opposite signs.
However, the comparing process can just be achieved after all the
local gradients have been uploaded and aggregated, thus causing
redundant works, being not efficient. Recent work [28] has found
that there exists only a small discrepancy between the gradients
of two sequential iterations. Therefore, it is reasonable for each
user to compare their current local gradients with previous global
gradient for achieving our goals. More details of this method are
presented through the pseudo-code in Algorithm 1.

Remark: Each user will locally execute above comparison
processes, sharing no private information to fog nodes, so that
here no privacy issue should be considered. Besides, the contra-
dictory components labelled null, and the labels will be shared
to fog nodes for guaranteeing the robustness of the gradient
aggregation, since in our framework, the gradient aggregation
will not be achieved until all participating users have shared
their gradient information. Additionally, if the proportion of the
components with opposite signs is larger than a tuned threshold
v(j), the whole gradient gm,(j) of user m will be excluded in this
iteration. Furthermore, since we consider that only a small part
of low-quality gradients exist in the practical training process,
the convergence of the model can still be guaranteed, even if
some contradictory components are removed. This result can
also be clarified in our experiments in Section. V.

2) Weighted Aggregation: In this part, we first introduce
how to update the weight of each component, then we present
the method for weighted aggregation. Considering each l-th
component of global gradient gl, each user’s weight of the l-th

component will be updated as follows:

Wl
m = log(

∑M
m=1 dis(g

l
m, gl)

dis(glm, gl)
) (5)

where dis(·) is a function for measuring the distance between
glm and gl. Here we utilize a squared distance function [29] as
follows.

dis(glm, gl) = (glm − gl)
2

(6)

Then given each user’s weight Rl
m, each l-th component of the

global gradient is updated as follows:

gl =

∑m=M
m=1 Wl

mglm∑m=M
m=1 Wl

m

(7)

Remark: Utilizing (6) to measure the weight requires that glm
and gl have the same sign, thus guaranteeing the convergence of
the aggregation process. To do so, we can remove the compo-
nents with opposite signs based on Algorithm 1 before executing
the weighted aggregation. Besides, as shown in (6), the closer
between the local component and the global component, the
higher weight of the local component is set. This is reasonable.
Recent work [27] has found that if two gradients are generated
from two datasets with similar quality, the value discrepancy
between the components in these two gradients will be quite
small. Additionally, in this paper, the component glm satisfying

Wl
m−minj∈[1,M] W

l
j

maxs∈[1,M] W
l
s−minj∈[1,M] W

l
j

< θ will be considered low-quality,

where θ is a threshold value negotiated by each user. This setting
was also applied in works [27], [28]. Furthermore, for achieving
the FL training while handling low-quality-data users, during the
training process, we will iteratively execute “ RCC” and “WA”
until the optimal global gradient is obtained.

Nextly we introduce how to apply our SCEP to protect all
users’ related information (including each user’s gradient and
aggregation weight values) in the above training process.

C. Construction of GALAXY

We now describe the workflow of our GALAXY. As described
in Fig. 5, it contains three phases: initialization, gradient gener-
ation and sharing, and model update.

1) Initialization: In this phase, we establish an initialization
for our MPC-based secure environment and the DNN model.
We first construct an MPC-based framework, which allows
all the computations to be executed in a finite field F = Zp,
where p is a prime. Then we initialize the (T,N) parameter
for the MPC algorithm, where N denotes the total number of
fog nodes, and T is the threshold value. For initializing the
DNN model, we consider the global weight vector ω in L
dimensions, and then we pre-train the DNN model, initializing
ω as ω(0)=(ω1

(0), . . ., ω
l
(0), . . ., ω

L
(0)) and generating the global

gradient initialized as g(0)=(g1
(0), . . ., g

l
(0), . . ., g

L
(0)).

2) Gradient Generation and Sharing: In j-th iteration, each
user m will first train their local DNN model with local dataset
to generate a local gradient. Then each user m utilizes the
quantization method [30] to transfer the local gradient to an inte-
ger vector, denoted as gm,(j) = (g1

m,(j), . . ., g
l
m,(j), . . ., g

L
m,(j)).
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Fig. 5. Workflow of GALAXY.

Next each user m generates the shares of gm designated for
each fog nodes Pn, where n ∈ [1, N ], via (T,N )-threshold
Shamirs secret sharing. This can protect each user’s private
gm,(j) against fog nodes, even at most T fog nodes col-
lude with each other. Specifically, each user m randomly
generates a polynomial fgm,(j)

(x) = gm,(j) + a1
m,(j)x+ · · ·+

atm,(j)x
t + · · ·+ aT−1

m,(j)x
T−1, where each atm,(j) is randomly

chosen from Zp. Based on the polynomial, each user m cre-
ates a share group [gm,(j); fgm,(j)

(x)]T , and sends each share
[gm,(j); fgm,(j)

(x)]nT = fgm,(j)
(n) to each fog node Pn.

3) Model Update: For accomplishing the model update, we
will iteratively remove contradictory components and execute
the private weighted gradient aggregation. The details are pre-
sented as follows. First of all, each user m locally removes the
components with opposite signs based on Algorithm 1. This
process will be executed locally by each user, so that here no
privacy issue should be considered.

Then we introduce how to privately achieve the weighted
gradient aggregation for the remaining components. For
each l-th component, each user m first locally calculates
Dl

m,(j) = dis(glm,(j), g
l
(j−1)), and generates the secret share set

[Dl
m,(j), fDl

m,(j)
]T for the polynomial fDl

m,(j)
, and then sends

each [Dl
m,(j) a

b
]nT = fDl

m,(j)
(n) to each node Pn. Next, each

user m locally calculates logDl
m,(j), and generates the secret

share set [logDl
m,(j), flogDl

m,(j)
]T for the polynomial flogDl

m,(j)
,

sending each share of [logDl
m,(j)]

n
T = flogDl

m,(j)
(n) to each

node Pn. After achieving the sharing task, users will be freed
intermittently until receiving the global parameters from fog
nodes to start next iteration.

When receiving all the shares uploaded by users, all fog
nodes calculate [suml

dis,(j), fsuml
dis,(j)

]T =
∑M

m=1[D
l
m,(j)]T ,

and each Pn sends each [suml
dis,(j)]

n
T = fsuml

dis,(j)
(n) to Pi.
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Then Pi reconstructs suml
dis,(j) based on Lagrange interpre-

tation. Next, Pi calculates logsuml
dis,(j), generates the se-

cret share set [logsuml
dis,(j)]T , and sends each labelled share

[logsuml
dis,(j)]

n
T to each node Pn. After receiving the share

of [logsuml
dis,(j)]

n
T , each node Pn calculates [Wl

m,(j)]
n
T =

[logsuml
dis,(j)]

n
T − [logDl

m,(j)]
n
T for each user m. Then each

fog node Pn calculates [Wl
m,(j) ∗ glm,(j)]

n
T through the multi-

plication gates in SCEP, and obtain
∑M

m=1[W
l
m,(j) ∗ glm,(j)]

n
T

and
∑M

m=1[W
l
m,(j)]

n
T through the addition gates. Next each fog

node Pn sends
∑M

m=1[W
l
m,(j) ∗ glm,(j)]

n
T and

∑M
m=1[W

l
m,(j)]

n
T

to Pi. After receiving these shares from all fog nodes,
based on Lagrange interpretation, Pi reconstructs the value of∑m=M

m=1 Wl
m,(j) ∗ glm,(j) and

∑m=M
m=1 Wl

m,(j), and obtains the

l-th global gradient component gl(j) =
∑m=M

m=1 Wl
m,(j)g

l
m,(j)

∑m=M
m=1 Wl

m,(j)

. Pn

and userm iteratively remove contradictory components and
privately execute the weighted gradient aggregation until the
optimal global gradient is obtained.

After obtaining all the global components of g(j), Pi calcu-
lates ωj+1=ωj − αg(j) based on (4), and broadcasts the current
global gradient and weight of the DNN model to all other
fog nodes and each user m. Above processes will be executed
iteratively until the loss function reaches the minimum.

Remarks: During the above processes, users are only required
to upload secret shares, and other computations are outsourced
to fog nodes. Therefore, after achieving the sharing task, users
can be off-line until next iteration starts, which can minimize the
overhead of edge users. Besides, based on the (T,N)-threshold
property of our framework, even if at most T−1 fog nodes col-
lude with each other, each user’s privacy will still be guaranteed.
Meanwhile, even if at most N − T fog nodes simultaneously
drop out during the aggregation process, the final aggregation
result can still be reconstructed by the remaining fog nodes.

IV. PRIVACY GUARANTEES

As mentioned in Section II-B, the privacy threats are mainly
derived from the fog nodes. Thereby, our goal of GALAXY is
to guarantee all user-related information, including gradient
and aggregation weight, from being disclosed to any fog node.
Intuitively, in our protocol, each user m will just upload the
shares of gradients, e.g., [gm, fgm ]T , while each fog node Pn

will implement a series of operations on these shares until a final
result is obtained. Through the utilization of our SCEP, users’
privacy will be protected from semi-honest fog nodes, even if
at most T − 1 of them collude with each other. We present the
formal proof based on UC model as follows.

Proposition 1: (Against semi-honest fog nodes) Considering
a corrupted node group A ⊂ {P1, . . .PN}, where |A| < T <
N/2, there exists a simulator SIM with unlimited computing
power such that for the given security parameter p, threshold
value T , and total number of fog nodes N , in the execution of
our Galaxy, the view of A in the simulator SIMp,T,N

A is indis-
tinguishable from view of A in the real protocol REALp,T,N

A

in an information-theoretic sense, even if fog nodes∈ A collude

with each other:

SIMp,T,N
A ≡ REALp,T,N

A (8)

Proof: We define such a simulator SIM, which takes
input of the gradient from users randomly assigned as
G′M=(g′1, . . ., g

′
m, . . ., g′M ) instead of the input of real protocol

REALGM=(g1, . . ., gm, . . ., gM ), rigorously, both ofG′M and
GM belong to Zp, holding the same distribution. It runs our
Galaxy as same as the real protocol. Then we prove indistin-
guishability between SIMp,T,N

A and REALp,T,N
A in a hybrid

argument [31], [32], as follows.

hyb1 In this hybrid, each user m uploads the share of [gm,(j)]
n
T

to each fog node Pn in real protocol, while in the simulator
each fog node takes the share of [g′m,(j)]

n
T . Based on the

property of Shamir’s secret sharing, [gm,(j)]
n
T and [g′m,(j)]

n
T

have the same distribution, which can further prove that
SIMp,T,N

A ≡ REALp,T,N
A .

hyb2 In this hybrid, each userm uploads the share of [Dl
m,(j)]

n
T

and [logDl
m,(j)]

n
T to each fog node Pn in real protocol, while

in the simulator each fog node takes the share of [D′lm,(j)]
n
T

and [logD′lm,(j)]
n
T . Based on the property of Shamir’s secret

sharing, [Dl
m,(j)]

n
T and [D′lm,(j)]

n
T have the same distribution,

while [logDl
m,(j)]

n
T and [logD′lm,(j)]

n
T have the same distribu-

tion, such guaranteeing the indistinguishability SIMp,T,N
A ≡

REALp,T,N
A .

hyb3 In this hybrid, each fog node Pn calculates [suml
dis,(j)]

n
T

in the real protocol, and calculates [sum′ldis,(j)]
n
T in the

simulator. [suml
dis,(j)]

n
T and [sum′ldis,(j)]

n
T have the same

distribution, therefore, the indistinguishability SIMp,T,N
A ≡

REALp,T,N
A is guaranteed in this hybrid.

hyb4 In this hybrid, Pi reconstructs suml
dis,(j) through the

reconstruction function in our SCEP. Based on the secu-
rity of the reconstruction function, the indistinguishability
SIMp,T,N

A ≡ REALp,T,N
A is guaranteed in this hybrid.

hyb5 In this hybrid, Pi sends share of [logsuml
dis,(j)]

n
T to

each fog node Pn in real protocol, while in the simulator
each fog node takes the share of [logsum′ldis,(j)]

n
T . Based

on the property of Shamir’s secret sharing, [logsuml
dis,(j)]

n
T

and [logsum′ldis,(j)]
n
T have the same distribution. Therefore,

the indistinguishability SIMp,T,N
A ≡ REALp,T,N

A is guar-
anteed in this hybrid.

hyb6 In this hybrid, each fog node Pn calculates [Wl
m,(j)]

n
T

in the real protocol, and calculates [W′lm,(j)]
n
T in the sim-

ulator. Based on the security of addition and multiply-by-
constant gates, [Wl

m,(j)]
n
T and [W′lm,(j)]

n
T have the same

distribution. Therefore, the indistinguishability SIMp,T,N
A ≡

REALp,T,N
A is guaranteed in this hybrid.

hyb7 In this hybrid, each fog node Pn calculates [Wl
m,(j) ∗

glm,(j)]
n
T in the real protocol, and calculates [W′lm,(j) ∗
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TABLE I
SYSTEM PARAMETERS

g′lm,(j)]
n
T in the simulator. Based on the security of our multi-

plication gates, [Wl
m,(j) ∗ glm,(j)]

n
T and [W′lm,(j) ∗ g′lm,(j)]

n
T

have the same distribution. Therefore, the indistinguishability
SIMp,T,N

A ≡ REALp,T,N
A is guaranteed in this hybrid.

hyb8 In this hybrid, each fog node Pn calculates∑M
m=1[W

l
m,(j) ∗ glm,(j)]

n
T and

∑M
m=1[W

l
m,(j)]

n
T through

the addition gates in the real protocol, and calculates∑M
m=1[W

′l
m,(j) ∗ g′lm,(j)]

n
T and

∑M
m=1[W

′l
m,(j)]

n
T in the sim-

ulator. Based on the security of our addition gates, the indis-
tinguishability SIMp,T,N

A ≡ REALp,T,N
A is guaranteed in

this hybrid.
hyb9 In this hybrid, Pi reconstructs the values of∑m=M

m=1 Wl
m,(j) ∗ glm,(j) and

∑m=M
m=1 Wl

m,(j). Based on the
security of our reconstruction function, the indistinguishabil-
ity SIMp,T,N

A ≡ REALp,T,N
A is guaranteed in this hybrid.

As discussed above, based on the security of our SCEP, we
prove that there exist a simulatorSIMwith unlimited computing
power such that in the execution of our GALAXY, the view ofA in
the simulator SIMp,T,N

A is indistinguishable from view of A in
the real protocolREALp,T,N

A in an information-theoretic sense.
That means users’ gradient and gradient aggregation weight
plaintexts will not be exposed to fog nodes in the execution
of our protocol. �

V. PERFORMANCE EVALUATION

In this section, we introduce how to construct experiments to
evaluate the performance of our GALAXY, in terms of function-
ality, model accuracy, and resource overhead.

A. Experiment Setup

We set the main system parameters as shown in Table I,
and other experiment settings are presented as follows. We
implement our experiments in a Java environment, where we
conduct a platform for supporting (T,N)-Shamir secret sharing
and Lagrange interpolation. We build a decentralized computing
environment, simulating fog nodes on 5 Ubuntu servers with
Intel(R) Xeon(R) running at 2.10 GHz on 6 cores and 32 GB
RAM, simulating each edge user by Huawei nova3 running at
2.36 GHz on 4 cores and 6 GB RAM, and achieving the com-
munication between participants through TCP/IP with secure
channels based on transport layer security (TLS) protocol [33].
Additionally, to achieve the federated learning, we select the raw
data from the MNIST 1 dataset, which has 60,000 training and
10,000 testing examples, and we conduct the DNN model with 5

1http://yann.lecun.com/exdb/mnist/

layers including 2 convolutional layers, 1 average pooling layer,
and 2 fully connected layers.

B. Functionality

For specifying the functionality advantages of our GALAXY,
we make a comparison with four state-of-the-art works focusing
on privacy-preserving FL, i.e., SecProbe [15], PPFDL [16],
Secureml [6], and FALCON [10].

As shown in Table II, all the works can protect the privacy of
users’ gradients in a semi-honest threat model. SecProbe [15]
is the first work, which can resist low-quality-data users while
guaranteeing the confidentiality of users’ gradients. However,
SecProbe cannot protect the privacy of the aggregation results,
nor can it allow users or the server to drop out in the training
process. Following SecProbe [15], PPFDL [16] can handle low-
quality-data users while supporting users dropping out during
the training process. However, PPFDL requires two servers to
cooperatively establish the secure scheme, such that if any one
of these two servers drops out, the training process will be sus-
pended. Meanwhile, PPFDL permits no collusion between these
two servers. Secureml [6] respectively utilized technologies of
oblivious transfer (OT) and linearly homomorphic encryption
(LHE) to construct their framework of secure 2-party compu-
tation (2-PC). Although their scheme can be robust to users
being off-line during the training process, it cannot support any
server dropping out, nor can it permit these 2 servers to collude
with each other. FALCON [10] proposed a hybrid scheme based
on secure 3-party computation (3-PC). Nevertheless, in their
scheme, at least one server should be considered trusted, and
any two servers cannot collude with each other, while no server
is allowed drop out during the training process. Additionally,
since both of Secureml [6] and FALCON [10] focus on privacy
protection for original FL, the case of handling low-quality-data
users is out of the scope of their work.

In contrast to above works, our GALAXY utilizes Shamir’s
secret sharing and Lagrange interpolation, combined with arith-
metic circuit, to conduct the secure multi-party computation
framework, based on which, not only users’ gradient information
can be protected, but also the confidentiality of users’ gradient
aggregation weights can be guaranteed. Meanwhile, the (T,N)-
threshold property allows our GALAXY to resist the collusion
among up to T − 1 fog nodes, while supporting at most N − T
fog nodes simultaneously being off-line. Besides, similar to
PPFDL [16], our GALAXY can also alleviate the negative impact
of low-quality-data users.

C. Accuracy

In this section, we discuss the model accuracy of our GALAXY.
We implement the training task securely with a series of epochs
(number of iterations), and observe the testing results (accu-
racy) after each epoch. Besides, two representative works [15],
[34] are compared with our GALAXY. One is FedAvg [34],
an original federated learning, averages shared gradients to
achieve the training task, without any consideration of handling
low-quality data, implemented in a plaintext mode. Another one,
SecProbe [15], is the first work of privacy-preserving FL with
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TABLE II
FUNCTIONALITY COMPARISON

Fig. 6. Comparison of accuracy with different number of epochs.

low-quality-data users, utilizing differential privacy to protect
users’ privacy. This comparison is quite meaningful. Based on
the comparison between FedAvg and our GALAXY, we can mea-
sure the effect on the accuracy caused by our method of handling
low-quality-data users. Through comparing our GALAXY with
SecProbe, our advantage (better trade-off between privacy and
accuray) over the DP-based method can be demonstrated.

Considering the practical training process, we implement our
experiments over different proportions (R) of low-quality-data
users. For simulating these users, we randomly select R of the
participating users, adding random noise (0−1) to their data to
simulate the low-quality data. To demonstrate the robustness
to low-quality-data users in our scheme, we change R from
10% to 25%, with interval of 5%, and observe the results of
accuracy in differentR, which is also utilized in FedAvg [34] and
SecProbe [15] for the comparison. Besides, for implementing
SecProbe in our experiments, we set privacy budget ε as 10 for
its technology of differential privacy, which is as same as the
setting in SecProbe [15].

As shown in Fig. 6, all the subgraphs present us the ac-
curacy will increase with the increasing epochs, and gradu-
ally reach a max value after a certain epoch. It can also be
observed that the accuracy of our GALAXY is always much
higher than FedAvg [34] and SecProbe [15] in each subgraph
(R=10%, 15%, 20%, 25%), finally reaching up to 95.73%,
93.77%, 90.36%, and 87.38% respectively. Besides, it is shown
that at the point of the same accuracy value, less epochs are
required in our GALAXY compared with FedAvg and SecProbe.
This means our GALAXY has a higher convergence rate in the
training process. Additionally, we can observe that the accuracy
in our GALAXY just has a little decrease when R reaches 25%,
however it decreases greatly in FedAvg and SecProbe. We can at-
tribute above results into two main factors: (i) In the FedAvg [34],
simply utilizing the method of averaging gradients nearly cannot

mitigate the negative impact caused by low-quality-data users,
and (ii) SecProbe, applying the technology of differential privacy
to protect users’ privacy, cannot obtain abundant benefit of
accuracy, even if the negative impact of low-quality-data users
can be mitigated to a certain degree.

In contrast, our GALAXY utilizing MPC technology to pro-
tect all user-related information hardly decreases the accuracy.
Meanwhile, based on the hybrid method of handling low-
quality-data users, our GALAXY can further obtain an improve-
ment on accuracy. All of these factors benefit our GALAXY with
a superior performance in terms of accuracy.

D. Computation Overhead

In this section, we present both the complexity analysis and
experiment results for specifying the computation overhead of
our scheme. Besides, we make a comparison with an MPC-based
scheme PPFL [32], which also utilizes Shamir’ secret sharing
as one of the technologies for constructing their framework.

1) Complexity Analysis: Considering M participating users,
N participating fog nodes, K gradient components per user, we
conduct the complexity analysis for each user m, each fog node
Pn, and the fog node Pi, as follows.

Userm:O(KN2 +K). Each userm’s computation overhead
can be broken up into 3 main parts: (i) generating [gm,(j)]

n
T for

each Pn, which takes O(KN2), (ii) generating [Dl
m,(j)]

n
T and

[logDl
m,(j)]

n
T for eachPn, which takesO(KN2), and (iii) locally

calculating Dl
m,(j) = dis(glm,(j), g

l
(j−1)) and logDl

m,(j), which

takes O(K). Overall, each userm costs O(KN2 +K).
NodePn(n �= i):O(KMN2 +KM). EachPn’s computation

overhead can be broken up into 4 main parts: (i) calculat-
ing [suml

dis,(j)]
n
T =

∑M
m=1[D

l
m,(j)]

n
T , which takesO(KM), (ii)

calculating [Wl
m,(j)]

n
T , which takes O(KM), (iii) calculating
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Fig. 7. Computation overhead of GALAXY.

[Wl
m,(j) ∗ glm,(j)]

n
T , which takes O(KMN2 +KM), and (iv)

calculating
∑M

m=1[W
l
m,(j) ∗ glm,(j)]

n
T and

∑M
m=1[W

l
m,(j)]

n
T ,

which takes O(KM). Overall, the computation complexity of
each Pn is O(KMN2 +KM).

Node Pi: O(KMN2 +KM+KN2 +K). In addition to
achieving the task undertaken by Pn, Pi is also responsible for
completing the reconstruction. Therefore,Pi will take additional
cost as follows: (i) reconstructing suml

dis,(j), which takesO(K),

(ii) calculating [logsuml
dis,(j)]T , which takes O(KN2), and (iii)

reconstructing
∑m=M

m=1 Wl
m,(j) ∗ glm,(j) and

∑m=M
m=1 Wl

m,(j),
which takes O(KM). Overall, Pi’s computation complexity
takes O(KMN2 +KM+KN2 +K).

2) Experiment Results: As shown in Fig. 7, the computation
overhead of each user increases linearly with the increasing
number of gradient components per user, but stays the same with
the increasing number of users. That means the increase of users
will not bring additional overhead to each single user. Besides, it
can be observed that the overhead of each user is far less than the
overhead of fog nodes, being up to 0.028 s and 0.101 s respec-
tively in Fig. 7(a) and (b). This result is reasonable, since our
scheme outsources most of the computation tasks to fog nodes,
thus mitigating the computation pressure on user side. This is
very friendly for the edge users with limited hardware resources
in IoV. Additionally, since Pi is responsible for achieving the
reconstruction missions, the computation overhead of Pi is a
little higher than Pn(n �= i).

As shown in Fig. 8, we compare the computation overhead
between GALAXY and PPFL [32]. The result shows that, for both
user side and server side, our scheme can perform much better
than PPFL in terms of computation overhead, especially on user
side. The reasons fall into 2 main factors: (i) the complexity
of PPFL takes O(M2 +M ·K) and O(K ·M2) respectively on
user side and server side, which are quadratic functions of
the number of users, while our complexity is just linear with
the number of users on server side and has no relation with
the number of users on user side. (ii) although PPFL also
utilizes Shamir’ secret sharing as one of the technologies for
constructing their framework, their method requires much more
computations for implementing their masking scheme in the
single server setting. In contrast to PPFL, our GALAXY just
requires simpler operations in a finite field. Obviously, our
GALAXY can be more suitable for Internet of Vehicles, which
consists of tens of thousands of edge users.

E. Communication Overhead

1) Complexity Analysis: In this part, we present the commu-
nication complexity analysis for each user m, each fog node Pn,
and the fog node Pi, as follows.

User m: O(KN). The communication cost of each user
userm falls into 3 parts: (i) sending each [gm,(j)]

n
T to each Pn,

which takes O(KN), (ii) sending each [Dl
m,(j)]

n
T to each Pn,

which takes O(KN), and (iii)sending each [logDl
m,(j)]

n
T to each

Pn, which takes O(KN). Overall, each userm costs O(KN).
Node Pn(n �= i): O(KM+K). The communication cost of

each fog node Pn can be broken up into 4 parts: (i) receiving
each userm’s [gm,(j)]

n
T , [Dl

m,(j)]
n
T , and [logDl

m,(j)]
n
T , all of

which take O(KM), (ii) sending [suml
dis,(j)]

n
T to Pi, which

takes O(K), (ii) receiving [logsuml
dis,(j)]

n
T from Pi, which

takes O(K), and (iv) sending
∑M

m=1[W
l
m,(j) ∗ glm,(j)]

n
T and

∑M
m=1[W

l
m,(j)]

n
T to Pi, which takes O(KM). Overall, each

Pn(n �= i) costs O(KM+K).
Node Pi: O(KMN+KN+KM+K). As the reconstruc-

tion node,Pi takes additional communication cost as follows: (i)
receiving [suml

dis,(j)]
n
T from each Pn, which takes O(KN), (ii)

sending [logsuml
dis,(j)]

n
T to each Pn, which takes O(KN), and

(iii) receiving
∑M

m=1[W
l
m,(j) ∗ glm,(j)]

n
T and

∑M
m=1[W

l
m,(j)]

n
T

from eachPn, which takesO(KMN). Overall,Pi’s computation
complexity takes O(KMN+KN+KM+K).

2) Experiment Results: As shown in Fig. 9, on user side,
the communication overhead is much smaller compared with
server side. The reason is that in each iteration, our scheme
only requires each user to upload some shares to the fog nodes
at the beginning and receive the final global parameters at the
end, while more interactions are achieved among fog nodes for
achieving the secure multi-party computation. Besides, on user
side, the communication overhead will just increase with the
increasing number of gradient components per user, but keep
constant when number of users increases. That is to say, even if
the number of users is extended, the communication overhead of
a single user will not increase. This is a fantastic result, especially
for IoV applications with enormous participating edge users.

As shown in Fig. 10, we also present some comparisons
between GALAXY and PPFL [32] in terms of communication
overhead. It is observed that on both user side and server side,
GALAXY can outperform PPFL in terms of communication
overhead. Especially, the communication overhead of PPFL is
very sensitive to the number of users, which means that even
a little increase in number of users will cause much increase
of communication overhead. In contrast, the communication
overhead of our scheme increases a little on server side and
keeps constant on user side. The reason is explained as follows.
First of all, in PPFL [32], each user is required to send both
the encrypted gradients and secret keys to the cloud server,
respectively for aggregation and for encryption. In contrast, our
GALAXY just requires each user to upload some shares to the
fog nodes. Besides, for guaranteeing the robustness to users
dropping out during the execution of their protocol, PPFL will
invoke their secret sharing protocol repeatedly to recover off-line
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Fig. 8. Computation comparison between GALAXY and PPML. (a), (b) user side. (c), (d) server side.

Fig. 9. Communication overhead of GALAXY.

users’ shares, which will cause more additional communication
overhead. However, our scheme requires no additional commu-
nication overhead, even if users are off-line during the training
process. Similarly, on server side, the cloud server in PPFL will
be responsible for receiving encrypted gradients as well as secret
shares from users, and handling off-line users, all of which make
the communication complexity of PPFL up to O(M2 +M ·K),
while the communication complexity of our scheme keeps linear
with M. Overall, the above experiment results show that our
GALAXY performs with a lower communication overhead than
PPFL.

VI. RELATED WORK

For addressing the issue of privacy-preserving FL, many
approaches have been proposed, spanning various technology
domains. Meanwhile, considering the practicality of FL, how
to handle low-quality-data users in the privacy-preserving FL
has also attracted many attentions. In this section, we discuss
both the methods of privacy-preserving FL without and with
low-quality-data users as follows.

A. Conventional Privacy-Preserving FL

For addressing the conventional issue of privacy-preserving
FL, existing methods are mainly derived from three technolo-
gies, i.e., differential privacy (DP), homomorphic encryption
(HE), and secure multi-party computation (MPC). Recently, to
address the issue with the technology of differential privacy, Yu
et al. [35] proposed a concentrated differential privacy (CDP),
which can outperform the traditional DP-based framework in
terms of model accuracy. Besides, their scheme is also a uni-
versal DP method, which can track the cumulative privacy loss
for FL. However, DP-based methods are required to balance
privacy and accuracy, which means that the higher privacy

is obtained the more accuracy is lost. Indeed, the work [4]
specified that current DP-based methods rarely offer acceptable
trade-off between privacy and accuracy for complex learning
tasks. Besides, the research [2] has claimed that the approach
for federated learning can be fundamentally destroyed even if all
exchanged parameters are perturbed via DP-based technology.
Therefore, utilizing current DP-based methods to protect users
privacy is not suitable in this paper.

Based on HE technologies, Phong et al. [36] respectively
exploited fully homomorphic encryption (FHE) and Linear ho-
momorphic encryption (LHE) to construct their two privacy-
preserving FL frameworks, while utilizing asynchronous SGD
and secure channel to improve training efficiency and guarantee
secure communication. To conclude, FHE, such as LWE-based
homomorphic encryption, holding both multiplication and addi-
tion homomorphisms, can effectively achieve private federated
learning. However, FHE would consume huge computation re-
sources for achieving the FL training tasks. LHE, just like Paillier
encryption, has smaller key sizes than FHE. Nevertheless, its
security depends on enormous modular exponential operations
in ciphertext domain, which is also computationally intensive.
When it is utilized for protecting FL, the large size of ciphertext
will cause an insurmountable overhead pressure for computing
participants, especially for the setting with large-scale users
and training samples. thus making it unpractical for real-world
federated learning.

Through the utilization of MPC, Keith Bonawitz et al. [32]
proposed a practical secure aggregation protocol for federated
training in a single-server setting, where they combined se-
cret sharing and masking technology to protect users’ gradi-
ent information. Considering the sporadic instability of users,
their scheme has the robustness to users being off-line dur-
ing the training procedure. However, their solution requires
enormous rounds of interactions. Especially, when some users
are off-line during the process, their masking scheme needs
to be reconstructed, thus causing huge communication over-
head. More recently, several state-of-the-art researches employ
MPC technologies to construct privacy-preserving schemes for
machine learning, and operate their methods on two [5]–[7],
three [8]–[10], or four [11], [12] servers. Such methods, nev-
ertheless, limit the number of computing participants in fixed
2, 3, and 4. Besides, their schemes cannot defend against the
collusion between servers, nor can they support servers dropping
out during the training process. Therefore, these methods are
not suitable in the practical setting of non-cloud-assisted fog
computing.
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Fig. 10. Communication comparison between GALAXY and PPML. (a), (b) user side. (c), (d) server side.

B. Privacy-Preserving FL With Low-Quality-Data Users

For addressing the issue of privacy-preserving FL with low-
quality-data users, two state-of-the-art works have been pro-
posed. Specifically, Zhao et al. [15] proposed the first scheme,
i.e., SecProbe. They utilized the technology of differential pri-
vacy to protect users’ privacy, focusing on how to perturb
the loss function during the model training process. Following
Zhao et al.’s work, Xu et al. [16] proposed a novel scheme,
named PPFDL, where they integrated technologies of garble
circuit (GC) and oblivious transfer (OT) to construct a secure
two-party computation (2-PC) cryptosystem. Besides, they cre-
ated a method of MethIU to mitigate the negative impact of
low-quality-data users while protecting the MethIU under their
proposed secure framework.

However, the DP-based SecProbe [15] cannot supply enough
privacy guarantee, if a high-level accuracy of the DNN model
is required. Moreover, their scheme lacks the mechanism for
protecting users’ information aggregation weight, such that
users’ fairness cannot be guaranteed during the training process.
Additionally, the MPC-based PPFDL [16] suffers from limited
scalability, security, and functionality. That is, there is no permis-
sion of collusion between these two fixed cloud servers, and none
of them is allowed to be off-line during the process. Therefore,
both their schemes [15], [16] are unsuitable in the setting of this
paper.

Different from the above two works, our GALAXY proposes a
novel MPC-based framework for non-cloud-assisted fog com-
puting through the masterly utilization of Shamir’s secret shar-
ing, Lagrange interpolation, and arithmetic circuit. Based on
our secure framework, both users’ gradient information and
the confidentiality of users’ gradient aggregation weights can
be protected. Besides, the (T,N)-threshold property of our
GALAXY can defend against the collusion among multiple fog
nodes while supporting some fog nodes dropping out during
the training process. Furthermore, as same as PPFDL [16], our
GALAXY can effectively handle low-quality-data users.

VII. CONCLUSION

In this paper, we have proposed a practical privacy-preserving
federated learning GALAXY in vehicular fog computing, the first
of its kind in the regime of privacy-preserving FL in the setting of
non-cloud-assisted fog computing. For enhancing the practical-
ity in real-world applications, our scheme can also mitigate the
negative impact of low-quality data during FL training process,

while all user-related information can be protected under our
secure framework. We demonstrate the performance of our
GALAXY through extensive experiments.
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